

Chemoreceptors Carotid Bodies Stimulated by a ♥ PaO2, ♥ pH, and hypoperfusion to the receptor. Primarily Ventilatory Response Aortic Bodies Stimulated by a ♥ PaO2, and hypoperfusion to the receptor. Primarily Circulatory Response

Central Chemoreceptors

- Medullary Centers
 - Located near Cranial Nerve IX and X
 - ♦ Stimulated by ↑ PaCO2, H+, and HCO3

Patient Positioning: Friend or Foe

• Trendelenburg:

- Cephalad shift of abdominal contents
- Decreased ability of the diaphragm to function
- Ventilation Zone 3> Zone 2 > Zone 1
- Decreased Compliance
- Reverse Trendelenburg
 - Increased Compliance
 - Caudad shift of abdominal contents
 - Ventilation Zone 1> Zone 2> Zone 3

Ventilator: What is Inside?

- Bellows: GE (formerly Datex-Omeda)
 - Driving Gas compresses bellows forcing gas by vaporizers and into the patient.
 - Driving gas is usually oxygen, sometimes air
- Piston: Drager Apollo or Fabius GS
 - Do not require a driving gas
 - Electric Motor moves a piston thus creating pressure to move air into a patient's lungs
- Turbine: Drager Perseus
 - Electric motor drives a blower which creates inspiratory pressure and flow
 - Most efficient ventilator

THESIA

Mechanical Ventilation in the OR

Positive Pressure Ventilator

- Used to adequately ventilate Patients
 - Decreased lung compliance
 - Increased airway Resistance
 - Absence of ventilation drive secondary to physiologic changes
- Multiple ventilation modes
- Computer-driven with active patient monitoring and feedback systems to enable adequate ventilation

Reasons for Mechanical Ventilation

Surgical Procedure

- Intra-thoracic or Intra-abdominal
- ENT
- Muscle Relaxation required for adequate exposure or decreased risk of complication
- Inability to adequately oxygenate a patient
 - Patient physiology
 - Pulmonary disease
 - Patient position

Hyperoxemia: Is it important?

• Suzuki, S. et al. <u>Anesthesiology</u> 2018: Randomized Study of 1786 patients

- Results showed that in 92% of patients O2 was maintained between .32 and .6. 1% of patients had O2<.3 and 7% of patients had O2> .7
- Of these patients 83% had hyperoxemia with 32% of patients having significant hyperoxemia
- Applegate, et al.: Intraoperative Hyperoxemia: An Unnecessary Evil
 - Mean PaO2 was 206mmHg with values up to 534mmHg of O2
 - Excessive O2 can lead to increase in reactive oxidative agents leading to cell damage, and dysfunction
 - Recommended to have O2 below 150mmHg

Assist Controlled Ventilation

- Intermittent positive-pressure ventilation mode in which the patient creates a sub-baseline pressure in the inspiratory limb which then triggers the ventilator to deliver a predetermined tidal volume
 - Back-up control mode should respiratory rate drop below a preset level
- Every breath is same volume whether patient initiates or the ventilator delivers
- Not for patients with a rapid respiratory rate

Pre-Existing Conditions that Compromise Ventilation

COVID-19 and Ventilation

- Decreased Oxygenation
 - Pre-op O2 Saturation
 - Pre-Existing Pulmonary disorder
- PEEP: Too Much or Too Little?
 - Maintain adequate oxygenation
 - Decrease Barotrauma
- Spontaneous Pneumothorax
 Be Vigilant

What does the Research Say?

- Tsumara, H. et al., AANA Journal (2021): Despite all the advances in modes and methods of Ventilation, Post-op Pulmonary Complications remain one of the leading causes of adverse outcomes following surgery and anesthesia. Lung-protective ventilation usually entails the use of physiologic tidal volume, positive end expiratory pressure, extended inspiratory time, and alveolar recruitment
- Park, SJ et al., Surgery Endoscopy (2016): Protective Lung Ventilation (low-tidal volume with PEEP during pneumoperitoneum was associated with less instances of pulmonary complications than conventional ventilation

