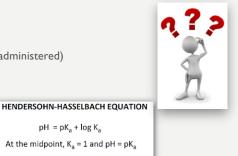

MECHANISM OF ACTION

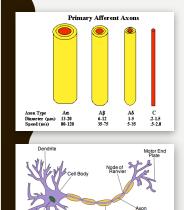
- Injected local anesthetic rapidly dissociates into an uncharged base (LA) and an ionized conjugate acid (LA+)
- The base (uncharged portion) can pass through the lipid membrane.
- Reversibly binds to the alpha subunit of voltage gated sodium channel

NA+ CHANNEL INACTIVATION



- Once inside the cell it becomes ionized. This LA+ (acid) binds to the alpha-subunit on the inside of the voltage gated sodium channels
- It effectively "plugs" the channel so the Na+ cannot pass therefore blocking nerve conduction process
- The channel is in a closed inactive state once the local binds. In this state the channel cannot be opened

ACTION & CHARACTERISTICS OF LOCAL ANESTHETICS


- Onset of action
 - pKa value
 - Concentration of drug (dose administered)
- Potency
 - Lipid solubility
- Duration of action
 - Protein binding
 - Vasoconstrictor added?

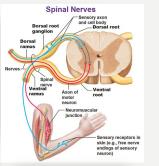
DIFFERENTIAL SENSORY AND MOTOR BLOCKADE

- · Local anesthetics ability to affect the nerve
 - Bupivacaine good example sensory blockade with minimal motor until high dose
- Anatomy of the nerve axon
- · Nerves sensitivity behavior

Myelin Sheath

NERVE FIBER REVIEW

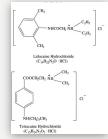
• Peripheral nerves can vary in

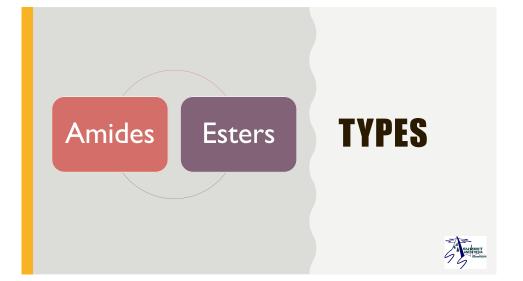

 $pH = pK_a + \log K_a$

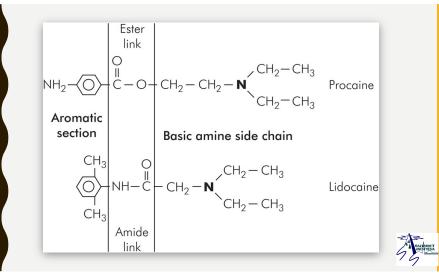
The pH at the midpoint is equal to the pK_{a}

- Size
 - Wider diameter nerves conduct signal faster than narrow ones
- Presence of myelin (myelination)
 - · Insulates the nerve, faster conduction of signal
- Structure

Fiber type	Function	(mm)	(m/s)	myennated
Αα	Motor efferent	12-20	70-120	yes
Αα	Proprioception	12-20	70-120	yes
Αβ	Touch, pressure	5-12	30-70	yes
Αγ	Motor efferent	3-6	15-30	yes
Αδ	Pain, temp, touch	2-5	12-30	yes
В	Paraganglion autonomic	<3	3-14	some
C dorsal root	Pain, temperature	0.4-0.12	0.5-2	No
C sympathetic	Postganglionic sympathetic	0.3-1.3	0.7-2.3	No


MULTIPLE-DOS LIDOCAINE HO


10 mg/mL



CHEMICAL STRUCTURE OF LOCAL ANESTHETICS

- The typical local anesthetic molecule contains a tertiary amine attached to a substituted aromatic ring by an intermediate chain that contains either ester or an amide linkage
 - Aromatic ring gives a lipophilic character
 - Tertiary amine end is relatively hydrophilic
 - LA is classified as amino-ester or amino-amide compounds

Metabolized by Pseudocholinesterase
-*Cocaine also metabolized in the liver
Benzocaine
Cocaine
Chloroprocaine
Procaine
Tetracaine

Generic Name	Trade name	Duration of action	Unique characteristics
Benzocaine*	Americaine	SHORT	Only Weak base No ionization Met-Hb
Cocaine*		I-hour plasma half life	* metabolized in liver also. vasoconstrictor!
Chloroprocaine	Nesacaine	SHORT	Least toxic of LA
Procaine		SHORT	Poor protein binding. low toxicity
Tetracaine*	Pontocaine	LONG	93% ionized at 7.4 76%protein binding

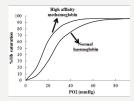
ESTERS

AMIDES

Amide- has "I" before -caine

Bupivacaine Dibucaine Etidocaine Lidocaine Mepivacaine Ropivacaine

• Amides are metabolized in the liver by CYTP450



Name	Trade name	Duration of action	Unique characteristics
Bupivacaine	Marcaine	LONG	96% protein binding
Dibucaine	Nupercaine	LONG	
Etidocaine	Duranest	LONG	Highly protein bound
Lidocaine*	Xylocaine	MODERATE	*neurotoxicity in sab
Mepivacaine*	Carbocaine	MODERATE	75% protein binding
Prilocaine*	Citanest	MODERATE	55% protein binding
Ropivacaine	Naropin	LONG	94% protein binding

METHEMOGLOBINEMIA

- Methemoglobin (MetHb) is altered state of hemoglobin (Hb)
 - Ferrous (Fe2+) irons of heme are oxidized to the ferric (Fe3+) state
 - Results in <u>left shift</u> of oxygen dissociation curve,
 - Less o2 released at tissue
- Signs: cyanosis and low spo2 with normal arterial PO2 on ABG, chocolate colored blood, brown urine

METHEMOGLOBINEMIA

- Congenital or Acquired
 - Specific medications can cause oxidation of Hb to MetHb
 - Local anesthetics
 - Prilocaine, lidocaine and benzocaine*
 - Anesthesia adjuncts
 - NTG, phenytoin, sulfonamides, metoclopramide, nitrous oxide, chloroquine

METHEMOGLOBINEMIA TREATMENT

- If asymptomatic with MetHb <20% no therapy necessary, just d/c causative agent
- Increase oxygen delivery to patient
- Administer Methylene blue
- Hyperbaric O2 and exchange transfusions alternate treatments

METHYLENE BLUE

- Accelerates enzymatic reduction of methemoglobin
 - Converts ferric ion (fe3+) back to ferrous state (fe2+)
- · Inhibitor of nitric oxide synthase and guanylate cyclase
- Improves hypotension in septic shock
- Antimalarial
- Dosing for Methemoglobinemia
 - If >20% MetHgb administer I-2mg/kg of I% solution IV over 5 minutes.
 - Dose can be repeated in 30-60 minutes
 - Total dose should not exceed 7-8mg/kg

METHYLENE BLUE CONSIDERATIONS

- Contraindicated in pts with G6PD deficiency patients [causes hemolysis]
 - Alternative treatment: Ascorbic acid 2mg/kg or IV thionine
- Can be toxic if high dosage administered
 - Cardiac arrhythmias, coronary vasoconstriction, decreased CO, decreased renal blood flow ,increased pulmonary vascular pressure and resistance
 - Dose dependent toxic CNS effects: Confusion, h/a, dizziness or tremors
 - + MAO inhibiting properties can precipitate fatal serotonin toxicity $\,>5mg/kg$
- Anaphylaxis has been reported
- Rebound Methemoglobinemia can occur 18 hours after methylene blue administration
- *False depression in o2 sat reading with administration!

LOCAL ANESTHETICS AND ALLERGIC REACTIONS

ALLERGIC REACTIONS

<u>ESTERS</u>

- Low allergic potential
- Cross sensitivity possible between Esters

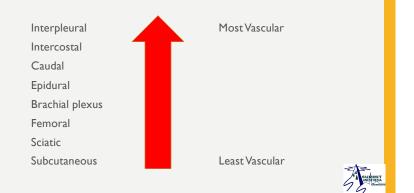
<u>AMIDES</u>

- Extremely rare to have an allergy to Amide Local Anesthetic
- No cross sensitivity within Amide class if allergy exists

There is no cross sensitivity between Ester and Amide classes

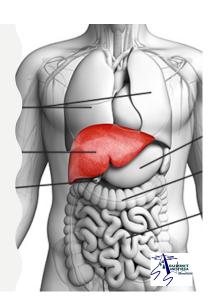
LA ALLERGY

- More common with Esters
- Ester type local anesthetics are derivatives of para-aminobenzoic acid (PABA)
- PABA is an immunogenic molecule (cross sensitivity within class)



UPTAKE AND TERMINATION OF ACTION

- Absorption into the systemic circulation removes the LA from the site of action (termination of effect)
- Higher amount of vascular uptake=Cp (plasma concentration)
- Influential factors for Vascular uptake and Cp
 - Site of injection
 - Tissue blood flow
 - Physiochemical properties of LA
 - Metabolism
 - Addition of vasoconstrictor



INJECTION SITE VASCULARITY

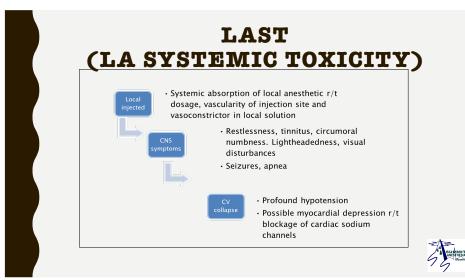
LA METABOLISM

- Factors that may decrease LA metabolism
 Amide local anesthetic is metabolized in the liver
- Predisposition to lidocaine toxicity directed r/t to decrease hepatic excretion
 - Decreased cardiac output
 - Cytochrome P450 inhibitors -Specifically 3A4 and 1A2
 - Liver conditions (Cirrhosis)

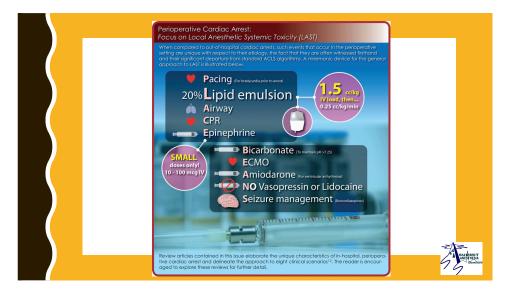
CYTOCHROME P450 INHIBITORS

- Anesthetics
- Anti-Arrhythmia Drugs
- Antibiotics/Antifungal/Antiviral
- Anti-Depressants
- H2 blockers
- Anti-Neoplastic
- Immunosuppressants

- Anticonvulsants
- Antihypertensive/Cardiac
- Calcium channel blockers:
- Cholesterol medications:
- Steroids
- Herbs/Foods
- Other: Methadone, Thyroxine


LA PLASMA LEVEL FACTORS

- Injected tissue acts as reservoir for LA
- Plasma protein binding helps limit Cp
- Metabolism decreases Cp
- Vasoconstrictor use decreases systemic absorption



LIDOCAINE
TOXICITY

TOXIC MANIFESTATIONS
Circumoral and tongue numbness
Lightheadedness and tinnitus
Visual disturbances
Muscular twitching
Unconsciousness
Convulsions
Coma
Respiratory Arrest
Cardiovascular Collapse

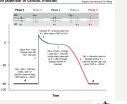
LIPID EMULSION

- Mechanism of action
 - Lipid sink
- Dosage
 - Bolus 20% 1.5ml/kg (lean body mass) over 1 minute
 - Infusion 0.25ml/kg/min
 - Maximum dose 10ml/kg in first 30 minutes

FACTORS THAT AFFECT LAST

- Increase risk of LAST
 - Hypercarbia
 - Hyperkalemia
 - Metabolic Acidosis

- Decrease risk of LAST
 - Hypocarbia
 - Hypokalemia
 - CNS depressants



CARDIAC TOXICITY

• Cardiac action potential, myocardial performance and vascular resistance are disrupted by LA

- · Factors can determine the extent of cardiotoxicity
 - Affinity for voltage gated sodium channels
 - Rate of disassociation from the receptor

* Bupivacaine has a greater affinity for voltage gated sodium channel than lidocaine and a slower rate of dissociation.

MAXIMAL DOSAGES

Medication		Max dose (mg/kg)	Max total dose (mg)
Bupivacaine	plain w/ epi		175mg 200mg
Chloroprocaine	plain w/epi		800mg 1000mg
Lidocaine	plain w/epi		300mg 500mg*
Mepivacaine		7	400mg
Prilocaine		8	500mg *
Procaine		7	600mg
Ropivacaine		3	200mg

TUMESCENT SOLUTION

• Developed in 1980s.

Tissue is swollen and firm = tumescent

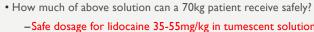
 I L NSS with additives used to infiltrate subcutaneous tissue to allow for liposuction cannula extraction of excess fat

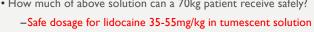
TUMESCENT SOLUTION COMPONENTS

- Lidocaine 0.05%-0.1% solution
- Max dose lidocaine 35-55mg/kg in tumescent
- Epinephrine 0.5mg-1.0 mg per L fluid
 - Max epi dose 50mcg/kg

SUMMIT ANESTHESIA

• 12.5 meg per L fluid





SAFE TUMESCENT DOSAGES

• 25ml of 2% lidocaine in 1L bag

- -What is concentration of solution? How many mg/ml?
- -25 x 20mg/ml + 500mg in 1L bag=0.5mg/ml or 0.05% solution

-70x35mg/kg=2450mg if 0.5mg/ml= 2450x2= 4900ml solution -70x55mg/kg=3850mg if 0.5mg/ml= 3850x2= 7700ml solution

EPINEPHRINE IN TUMESCENT SOLUTION

- Epi Iml of I:1000 equals Img/ml or 1000mcg diluted in 1000ml so 1mcg/ml
- Recommended safe dosage 50mcg/kg - 70kgx50mcg =3500mcg total =3500ml
 - tumescent acceptable

REFERENCES

- Butterworth, J. F., Mackey, D. C., Wasnick, J. D., Morgan, G. E., Mikhail, M. S., & Morgan, G. E. (2013). Morgan & amp; Mikhail's clinical anesthesiology. McGraw-Hill.
- Garcia DG. Etidocaine--a long-acting anesthetic agent. Review of the literature. Anesth Prog. 1982;29(1):12-13.
- Ginimuge, Prashant R, and S D Jyothi. 2010. "Methylene Blue: Revisited." Journal of anaesthesiology, clinical pharmacology 26(4): 517–20.
- Guay, Joanne. 2009. "Methemoglobinemia Related to Local Anesthetics: A Summary of 242 Episodes." Anesthesia & Analgesia 108(3): 837–
 45.
- Miller, R. D., Eriksson, L. I., Fleisher, L.A., Wiener-Kronish, J. P., Cohen, N. H., & Young, W. L. (2014). Miller's Anesthesia. Elsevier Health Sciences.
- Tandale, Sushama, Nandini M Dave, and Madhu Garasia. 2013. "Methemoglobinemia: What the Anaesthetist Must Know." Indian journal of anaesthesia 57(4): 427–28.
- Tetzlaff J.AMINO ESTER LOCAL ANESTHETICS. <u>http://faculty.weber.edu/ewalker/Medicinal_Chemistry/topics/Psycho/local_a_ester.html</u>
- Schmitt, Anderw, M., Harrington, Brian E., (2009) Dibucaine: The nearly forgotten Local Anesthetic. In: The Anesthesiology Annual Meeting.
 Rochester, New York: American Society of Anesthesiologist
- Varela, H., & Burns, S. M. (2010). Use of lipid emulsions for treatment of local anesthetic toxicity: A case report. AANA Journal, 78(51.Varela H, Burns SM. Use of lipid emulsions for treatment of local anesthetic toxicity: A case report. AANA J. 2010;78(5):359-364.), 359–364.

SUMMARY

• Knowledgeable of:

-Appropriate dosage

-Prepared for LAST

-Medication being administered

-Aware of allergic potential

Any Questions?

SummitAnesthesiaSeminars@gmail.com 888-676-CRNA

www.SummitAnesthesiaSeminars.com